An Improved DBSCAN Algorithm to Detect Stops in Individual Trajectories
نویسندگان
چکیده
With the increasing use of mobile GPS (global positioning system) devices, a large volume of trajectory data on users can be produced. In most existing work, trajectories are usually divided into a set of stops and moves. In trajectories, stops represent the most important and meaningful part of the trajectory; there are many data mining methods to extract these locations. DBSCAN (density-based spatial clustering of applications with noise) is a classical density-based algorithm used to find the high-density areas in space, and different derivative methods of this algorithm have been proposed to find the stops in trajectories. However, most of these methods required a manually-set threshold, such as the speed threshold, for each feature variable. In our research, we first defined our new concept of move ability. Second, by introducing the theory of data fields and by taking our new concept of move ability into consideration, we constructed a new, comprehensive, hybrid feature–based, density measurement method which considers temporal and spatial properties. Finally, an improved DBSCAN algorithm was proposed using our new density measurement method. In the Experimental Section, the effectiveness and efficiency of our method is validated against real datasets. When comparing our algorithm with the classical density-based clustering algorithms, our experimental results show the efficiency of the proposed method.
منابع مشابه
Mining Individual Behavior Pattern Based on Semantic Knowledge Discovery of Trajectory
This paper attempts to mine the hidden individual behavior pattern from the raw users’ trajectory data. Based on DBSCAN, a novel spatio-temporal data clustering algorithm named Speed-based Clustering Algorithm was put forward to find slow-speed subtrajectories (i.e., stops) of the single trajectory that the user stopped for a longer time. The algorithm used maximal speed and minimal stopping ti...
متن کاملبررسی مشکلات الگوریتم خوشه بندی DBSCAN و مروری بر بهبودهای ارائهشده برای آن
Clustering is an important knowledge discovery technique in the database. Density-based clustering algorithms are one of the main methods for clustering in data mining. These algorithms have some special features including being independent from the shape of the clusters, highly understandable and ease of use. DBSCAN is a base algorithm for density-based clustering algorithms. DBSCAN is able to...
متن کاملImprovement of density-based clustering algorithm using modifying the density definitions and input parameter
Clustering is one of the main tasks in data mining, which means grouping similar samples. In general, there is a wide variety of clustering algorithms. One of these categories is density-based clustering. Various algorithms have been proposed for this method; one of the most widely used algorithms called DBSCAN. DBSCAN can identify clusters of different shapes in the dataset and automatically i...
متن کاملRobust and Hierarchical Stop Discovery in Sparse and Diverse Trajectories
The advance of GPS tracking technique brings a large amount of trajectory data. To better understand such mobility data, semantic models like “stop/move” (or inferring “activity”, “transportation mode”) recently become a hot topic for trajectory data analysis. Stops are important parts of trajectories, such as “working at office”, “shopping in a mall”, “waiting for the bus”. There are several m...
متن کاملA New Method for Characterization of Biological Particles in Microscopic Videos: Hypothesis Testing Based on a Combination of Stochastic Modeling and Graph Theory
Introduction Studying motility of biological objects is an important parameter in many biomedical processes. Therefore, automated analyzing methods via microscopic videos are becoming an important step in recent researches. Materials and Methods In the proposed method of this article, a hypothesis testing function is defined to separate biological particles from artifact and noise in captured v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 6 شماره
صفحات -
تاریخ انتشار 2017